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Poincar6’s method of small parameter was used in [l] to establish the existence 
of periodic motions of a rigid body with a fixed point in aNewtonian force field. 

It was assumed that the body was nearly dynamically symmetric and its center 
of gravity close to the fixed point. The canonical Andoyer elements were used 

as the independent variables. The free rotation of the axisymmetric rigid body 

was taken as the unperturbed motion [2]. 
In the present paper the existence of periodic motions of a rigid body, fixed 

at the center of mass, in a central Newtonian force field, is investigated. The 

generating solution corresponds to a free Euler-Poinsot rotational motion, and 
the canonical action-angle variables are taken as the independent variables. 

It is assumed that the inertia ellipsoid of the body is nearly spherical. 

1, We use the canonical action- angle : L, G, H, 1, g, h [3] to describe the motion 

of a rigid body about a fixed center of mass in the Newtonian gravity field. The Hamil- 
tonian F = 3’ -.- U of the problem is given in terms of these variables by the formulas 

T =&a++++, Z=L[i+~(b--)(b+3)ea+..!3 (1.1) 

c=C, &$, $-=+ _+(+++), +++ 

u = 3P/2g,R (Aya + Byfa + Cy”2) 

Here A, B and C are the principal central moments of inertia of the body, P denotes 

the weight of the body, go the acceleration due to gravity and y, y’, y” are the direc- 

tion cosines of the radius-vector R of the center of mass originating at the center of at- 
traction in the coordinate system rigidly bound with the body. 

In what follows, we must obtain an expression for U in terms of the action-angle va- 

riables. To this end we employ the formulas describing the unperturbed Eulerian motion 
[S]. After some transformations, we obtain the following expression for U in the form 
of a series: 

U=@-A)% 
ka,kr 

(1.2) 

6, = 0, 2, 4, . . .; k, = -2, -i, 0, 1, 2) 

uo,o = ‘14 sin2 p (26-i) + Va (i-4, sir+ p) [(2&-i) co9 Bd,,“+sin~ &f,,*] 

u 2m.u = ‘/a (4 - a//a ‘sin2 p) [ (26 - 1) COS* edi,, + sina Od&,] 

u 2%*1 = l/., sin 2p (i-26) sin 28d&, +- X/4 sin2 p sin Bd;i,, 

U m.*2 = --‘/,sins p (i-26) sina Bd& +1/8 sin2 p (1 + cos f3)2d&, 

cosp=HfG, cod= L/G, 6=(C-A)I(B---A) 
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The quantities dk m are given by the well known series in increasing powers of e, the 
coefficients of which are functions of 8. Thus the problem can be described by the fol- 
lowing canonical expressions : 

dL/dt= -M/al, difdt= aF/aL 

dGtdt=-#tag, dgldt=S=/aG 

dH/dt= -cWfahh, dhIdr= aFjaH 

(1.3) 

The above system admits two first integrals 

P -‘cl, H=cs (I.41 

We now assume that the inertia ellipsoid of the body is nearly spherical. Then choosing 
the quantity y 1 3P (B - A) / (2g&) as the small parameter, we transform the Hamil- 
tonian P to the form necessary for the application of the Poincar6 method of small pa- 
pameter 

F=F,GG1+vFi +, &,g , F,=T, ,,F,=_u 
i ) 

(1.5) 

2, Let us introduce new notation for the action-angle variables 

Xl ;= L, za = G, xa = H, Y, = 4 ~a = g, YS = h 

Then we can write the equations of motion in the form 

i$/rEt= -aFf dyi, dytfdt= CM/&q (i= 1,2,3) P.1) 

where (1.5) now becomes 

F=Fo(%,52)fV 2 u k,k* (% %~3f cos wlYl+ h2Y2) (2.2) 

kx,kr 

When ~~0 ,(Z. 1) yields the following generating system of equations: 

dxijdt = 0, dy&t = aF,,/dxi = ni”’ 

the general solution of which has the form 

,i(O) = ai, -Jo) = .&a) t + oi (z = i,2?3) (2.3) 

where ai, oi are arbitrary constants of integration and (with (X.2) taken into accent) 

The above solution will be T -periodic provided that the following conditions hold for 
the integers $, (i = 1, 2, 3) : 

xi (T) - 21 (0) = 0, yi (T) - vi (0) = .i(‘) T = 2&n 

We consider a solution of (2.1) with initial conditions xi = ai + &, Yf = Wt i- ‘Pi* 

which we shall write in the form 
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“i = at + Bi + Et tt)t ?/t = nJO)t + 01 + yi + Q (t) (i = i, 2, 3) (2.5) 

Using the formulas (2.5) we pass to the new variables fi, qi. The equations of motion 
now become 

d& I dt = - aK I ht, dqt / dt = 8K / @t (i = 1, 2, 3) (2.6) 

The necessary and sufficient conditions for the periodic solutions of the system (2.6) to 

exist, are 
Et (T) = 0, rh (T) = 0 (i = 1, 2, 3) (2.7) 

Expanding F (at + pt 1 ni(‘)t + 01 -I- vi) into a power series in fl, y, v, we obtain from 
(2.6) the following explicit expressions for the conditions (2.7) : 

El, P-9 B* Y. VI (2.8) - 
VT 

+...=o (k=i,2) 

Es (TV B, Yt VI = 0 

B **a= 0 

F, (ai 1 n$‘)t + oi) dt 

0 



174 iu. V. Bi~kiu ad V. G. ikmin 

The equations of motion (2.1) admit two first integrals (1.4), the Jacobian of which,wnit- 
ten in the generating solution in terms of the variables zr, xa is different from zero 

a(%* 4 
a(q,z,) I XSmzi = 

@)#O 
G.9) 

Consequently the first and third condition of (2.8) must be regarded as being derivable 

from the remaining four conditions. We therefore assume that $,, = Es = 0 , consider- 
ing the following four equations only: 

Es = rli = rla = 9s = 0 (2,101 

In this manner we obtain four equations for six unknowns 0, y . It follows that two un- 
knowns (say yS and ~sf can be assumed arbitrary. Let w = ya = 0 and fetus choose the 
reference point at the initial instant of time so that 01 = OS = 0. Then Eqs. (2.10) 

will yield PI, Bs, @s, Ya as holomorphic functions of v, vanishing together with v if the 
conditions [4] 

(2.11) 

are satisfied, 

The equations r& = 0 and Q = 0 depend only on /I1 and $a when v = 0 , Conse- 

quently the Jacobian of (2. ll} is a product of the Jacobian of n2 and Q in & and @s 
which represents a Hessian F, in zr and zl, in the generating solution, and the Jacobian 

of &a and qs in a and pa which is equal to the Hessian [Fl] in ~8 and aa., 

Thus the third condition of (2.11) is equivalent to the other two conditions 

H (1”iA xI=a, # 0, 
I 

H f[F11) 
I 
as + 0 (2.12) 

xt=a( WP 

3. Let us now return to the previous action-angle variables and consider the condi- 
tions of existence of periodic solutions. The first condition of (2.12) is satisfied at all 

times except the case when t / D = 0, since we have, with the accuracy to within e2 , 

H (Fd = -&- (4 f$)+~LBb;‘l”i3bo+1)+...#0 

Before considering the remaining conditions, let us obtain the explicit expression for 

vil: 
a) in the case of commensurability Nn$@) = nIta) we have 

b) in the case of commensurability 2Nhf*) = IL,(*) we have 

{ F,f = u,, 0 (-$ ,+) + UzN,_l co9 (=%-- &) + uaN,-s cos 2 @%- &d 

Here N is a positive integer and the coefficients Uo,*, UsN,_s, UbN,_st UsN,_r are 
computed from (1.2) using the generating values of the variables Lo, Co and Ho* Sub- 
stituting the expression for [~rf into the first condition of (2. II) we obtain,in both ca- 
ses,for the angular variables 1, g, h the following generating values lo = 0; go = 0, 
n ! 2, ar, s/sn; hi, = 0. 

The second condition of pedodicity in (2.11) can be conveniently written in terms 

of a new quantity p. Equation (2.11) then becomes 
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1 aiF _. 
-T&F dp 

In the case (a) of commensurability this condition becomes 

co9 p ((26 - 1) - 3 [(26 - 1) cop” 94,, + sina WO02] + 

P [(26 - 1) sina 6d”,,,,,r + ‘ia (1 - CM O)“d&]} = 0 

(p = CO8 2g, = +I) 

(3.1) 

The condition (3.1) folds if p = nl 2 and the quantities 6, e and 8 can assume arbit- 

rary values. If the arbitrary value falls within the interval (0, n / 2j, then the quantities 
6, e, 8 are connected by some relation. 

Introducing new parameters a and u and characterizing the deviation of the inertia 

ellipsoid of the body from the spherical shape by the formulas B = A (1 -I- e), C = 

A (1 + p), we arrive at an equation of the type f (a, u, 8) = 0, which can be analyzed 
by numerical methods. Finally, the last condition of existence of periodic solutions al- 

most equal to the generating solutions obtained always holds. It can be written in anex- 
plicit form and verified directly. 
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